Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Hydraulic Structures and Irrigation Design Drawings

Time: 4 hrs.
Note: Answer any TWO full questions form PART-A and any ONE full question from PART-B.

PART - A

1 a. What do you understand by mass inflow curve and demand curve? Explain the method of calculating reservoir capacity for a specified yield from the mass inflow curve (with neat sketches).
(08 Marks)
b. A reservoir has a capacity of $6 \mathrm{Mm}^{3}$ and a drainage area of $250 \mathrm{~km}^{2}$. The average annual run-off is 400 mm and the sediment yield is $12.5 \mathrm{MN} / \mathrm{km}^{2}$. The sediment has an average specific weight of $15 \mathrm{kN} / \mathrm{m}^{3}$. Find the time required to reduce the reservoir capacity to $2 \mathrm{Mm}^{3}$. Adopt a uniform volume increment of $1 \mathrm{Mm}^{3}$. The trap efficiency Y may be approximated by the following equation:

$$
\mathrm{Y}=100\left[1-\frac{1}{100 \mathrm{X}+1}\right]^{1.5} \text { where } \mathrm{X} \text { is capacity inflow ratio. }
$$

(07 Marks)

2 a. What do you understand by uplift pressure? Explain with neat sketch, various ways to reduce uplift pressure on gravity dams.
(07 Marks)
b. Explain elementary profile of a gravity dam. Derive expressions for base width of an elementary profile for no tension and no sliding criteria.
(08 Marks)
3 a. Discuss in brief any two causes of failure of earth dams.
(08 Marks)
b. Discuss various seepage control measures necessary in earth dams with neat sketches.
(07 Marks)

PART - B

4 Design the surplus weir for a tank having the following data:
Combined catchment area $=25.89 \mathrm{sq} \mathrm{kms}$
Intercepted catchment area $=20.71 \mathrm{sq} \mathrm{kms}$
Full tank level $=$ RL +162 m
Máximum water level $=\mathrm{RL}+162.75 \mathrm{~m}$
General ground level at the proposed site of work $=\mathrm{RL}+161.00 \mathrm{~m}$
Ground level below the proposed surplus work $=R L+160.00 \mathrm{~m}$
Top bund level=RL +164.50 m
Top width of bund $=2 \mathrm{~m}$
Side slope on either side of bund $=2: 1$
Good soil for foundation $=R L+159.50 \mathrm{~m}$
(25 Marks)
Assume Ryve's coefficient as $\mathrm{C}=10$ and $\mathrm{c}=\frac{1}{4} \mathrm{C}$. Draw to a suitable scale the following views:
a. Longitudinal section and longitudinal elevation
(15 Marks)
b. Half plan at bottom and half plan at top
(20 Marks)
c. Section across the weir

5 Design a canal drop of 2 m for the following data:

	Canal u/s	Canal d/s
Full supply discharge	$4 \mathrm{~m}^{3} / \mathrm{s}$	$4 \mathrm{~m}^{3} / \mathrm{s}$
Bed width	6 m	6 m
Bed level	RL 110.00 m	RL 108 m
Full supply depth	1.50 m	1.50 m
Full supply level	RL 111.50 m	RL 109.50 m
Top width of bank	2 m	2 m
TBL	RL 112.50 m	RL 110.50 m

Ground level at the site of work $=$ RL 110.50 m .
Good soil available for foundation $=108.50 \mathrm{~m}$.
(25 Marks)
Draw to a suitable scale the following views:
a. Section across drop wall
b. Half plan at bottom and Half plan at top
c. Longitudinal section along drop wall and end view form d / s side

